Transverse Momentum Spectra of Identified Hadrons in $\sqrt{s} = 130$ GeV Au-Au Collisions #### J. Burward-Hoy Department of Physics and Astronomy, University at Stony Brook, New York for the PHENIX Collaboration #### Outline of Topics - Motivation - Identifying π^{\pm} , K^{\pm} , p^{\pm} in PHENIX - Single Particle P_t spectra - Radial flow - -hydrodynamics-based parameterization - Discussion and conclusion #### Motivation # Detecting π^{\pm} , K^{\pm} , p^{\pm} in PHENIX July 20, 2001 -2 #### Corrections to the Raw Spectra Used MC single particles and track embedding to correct for Tracking inefficiencies and momentum resolution Geometrical acceptance Decays in flight (π 's and K's) J. July 20, 2001 $-0.35 < \eta < 0.35$ The PHENIX Experiment Burward-Hoy ## pt Spectra of Identified Hadrons #### Protons Cross the Pions? HIJING π K 2 0 p_t (GeV/c) p crosses π p crosses K #### Centrality selected p_t spectra. . . #### <p_t> Across Participant Number #### PHENIX preliminary ## Identified particle m_t-m₀ Spectra In the range m_t - m_0 < 1 GeV, fit and extract the inverse slope T_{eff} $$\frac{1}{m_t}\frac{dN}{dm_t} \propto e^{-\frac{m_t}{T_{eff}}}$$ #### Effective Temperature and HIJING #### No radial flow in HIJING J. To measure the expansion parameters, use hydrodynamics-based parameterization. . . #### Hydrodynamics-based parameterization $1/m_{t} dN/dm_{t} = A \int f(\xi) \xi d\xi m_{T} K_{1}(m_{T}/T_{fo} \cosh \rho) I_{0}(p_{T}/T_{fo} \sinh \rho)$ integration variable $\xi \leftrightarrow \text{radius r}$ = r/R definite integral from 0 to 1 particle density distribution $f(\xi) \sim \text{const}$ linear velocity profile $\beta_t(\xi) = \beta_t \xi$ surf. velocity β_t ave. velocity $<\beta_t> = 2/3 \beta_t$ boost $\rho(\xi) = atanh(\beta_t(\xi))$ parameters $\begin{array}{c} \text{normalization A} \\ \text{freeze-out temperature } T_{fo} \\ \text{surface velocity } \beta_{t} \end{array}$ minimize contributions from hard processes fit m_t - m_0 <1 GeV #### **PHENIX Preliminary** #### 5% central data $$\begin{split} T_{\rm fo} &\sim 104 \pm 21 \; MeV \\ \beta_t &\sim 0.7 \mp 0.1 \\ &< \beta_t > \sim 0.5 \mp 0.1 \end{split}$$ Systematic errors estimated ~8% in T_{fo} ~5% in β_t Arrows indicate upper p_t in fit Burwaru-110y #### PHENIX Preliminary #### Parameter Space: χ^2 Contours of π -K-p 5% central #### Overlap Region in Parameter Space $$\begin{split} T_{\rm fo} &\sim 125 - 83 \; MeV \sim 104 \; MeV \\ \beta_t &\sim 0.6 - 0.8 \; \sim 0.7 \\ &< \beta_t > \sim 0.4 - 0.6 \sim 0.5 \end{split}$$ Systematic errors estimated ~8% T_{fo} ~5% β_t CERN Pb-Pb NA49: $T \sim 132 - 108 \text{ MeV} \sim 120 \text{ MeV}$ $\beta_t \sim 0.43 - 0.67 \sim 0.55$ # The H2H Model Comparison (Hydro 2 Hadrons) D. Teaney, E. Shuryak, et. al. flowing hadronic fluid AND particle cascade uses Hydrodynamics + Relativistic Quantum Molecular Dynamics (RQMD) cascade more constrained \rightarrow predictive power no scaling of nucleons to match data $\epsilon_0 \sim 16.75 \text{ GeV/fm}^3 \qquad \tau_0 \sim 1.0 \text{ fm/c}$ $\overline{p}/p \sim 0.5$ $<\epsilon_0> \sim 10.95 \ GeV/fm^3$ $\pi, \ K \ T_{fo} \sim 135 \ MeV < \beta_t > \sim 0.55$ nucleons $\sim 120 \ MeV < \beta_t > \sim 0.6$ NOTE: includes weak decays July 20, 2001 The PHENIX Experiment Burward-Hoy #### Conclusions - Fully normalized, centrality selected π^{\pm} , K^{\pm} , p/p_{bar} spectra in 130 GeV Au-Au collisions are measured in PHENIX (Summer 2000 runs) - significant p and p_{bar} contribution to hadron spectra starting at ~ 2 GeV/c STAR and PHENIX p_{bar} consistent - Both $T_{\rm eff}$ and $< p_t >$ depend on $N_{\rm part}$. $T_{\rm eff}$ depends on m_0 for 5% central and minimum bias events. There seems to be less of a dependence in the 60 92% centrality. - The data suggest sizeable radial flow at RHIC A simple model that assumes hydrodynamic behavior is fit simultaneously to the 5% central data. Good χ^2 fits for a finite range of anti-correlated parameters $$T_{fo} \sim 125 - 83 \text{ MeV} (\sim 8\% \text{ syst.})$$ $$b_t \sim 0.6 - 0.8 (\sim 5\% \text{ syst.})$$ $$<$$ b_t > $\sim 0.4 - 0.6$ - In comparison to NA49: $$T_{fo} \sim 132 - 108 \text{ MeV}$$ $$\beta_t \sim 0.43 - 0.67$$ – H2H model (D. Teaney, E. Shuryak, et. al) $$\pi$$, K: $T_{fo} \sim 135 \text{ MeV}$ $$<\beta_t>\sim 0.55$$ nucleons: $T_{fo} \sim 120 \text{ MeV}$ $$<\beta_{\rm t}>\sim 0.6$$ • July 26, 20% systematic uncertainty in overall normalization. #### The mass-squared width: how particle identification is done. momentum p pathlength L time-of-flight t $$|m_{meas}|^2 - m_{cent}|^2 < 2\sigma_{m2}^2$$ $$\mathbf{s}_{m^{2}}^{2} = \frac{\mathbf{s}_{p}^{2}}{p^{2}} \left(4m^{4} \right) + \frac{\mathbf{s}_{t}^{2}c^{2}}{L^{2}} \left(4p^{2} \left(m^{2} + p^{2} \right) \right)$$ #### Momentum resolution Time-of-Flight resolution July 20, 2001 The PHENIX Experiment Burward-Hoy #### Event centrality: how "head-on" is the collision? | Centrality | Collisions | Participants | |------------|------------------|------------------| | 0-5% | 945 ± 15% | 347 ± 15% | | 5-15% | 673 ± 15% | 271 ± 15% | | 15-30% | 383 ± 15% | 178 ± 15% | | 30-60% | 123 + 15% | 76 ± 15% | | 60-80% | 19 ± 60% | $19 \pm 60\%$ | | 80-92% | $3.7 \pm 60\%$ | $5 \pm 60\%$ | NIX Experiment Burward-Hoy # H2H Model The Effect of Weak Decays J. The measured contribution to nucleon spectra from such "real" background is forthcoming. # From Hydrodynamics: Radial Flow Velocity Profiles #### Effective Temperature and Linear Fit $$T_{eff} = T_{fo} + m_0 < b_t > 2$$ 5% central $$T_{fo} \sim 132 - 166 \text{ MeV}$$ $<\beta_t> \sim 0.4 - 0.6$ Systematic errors included Compared to hydrodynamics-based parameterization: T_{fo} within 30% and $<\beta_t>$ within 6% | Centrality | Positive | Negative | |------------|--------------------------------|--------------------------------| | | T_{fo} $\langle b_t \rangle$ | T_{fo} $\langle b_t \rangle$ | | min. bias | 161 ± 12 0.39 ± 0.07 | 151±15 0.41±0.07 | | 5% | 159 ± 13 0.39 ± 0.07 | 149 ± 17 0.46 ± 0.1 | | 60-92% | 143 ± 12 0.28 ± 0.1 | 134 ± 16 0.28 ± 0.1 | # $\chi^2(T_{fo},\beta_t)$ Contours July 20, 2001 The PHENIX Experiment Burward-Hoy #### The PHENIX Detector #### Relevant CERN SPS Observables T_{eff} depends on $m_0 \rightarrow radial$ flow Bjorken's formula: initial energy density $\langle \epsilon_0 \rangle \sim 1/\pi R^2 \tau_0 dE_t/dy$ $\langle \epsilon_0 \rangle \sim 3 \text{ GeV/fm}^3 (\text{NA49})$ #### **CERN SPS** #### Hydrodynamics-Based Parameterization The spectra are well described using hydrodynamic assumptions. CERN Pb-Pb NA49: $T \sim 132 - 108 \text{ MeV} \sim 120 \text{ MeV}$ $\beta_t \sim 0.43 - 0.67 \sim 0.55$